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Abstract The pervasiveness of Web 2.0 and social networking sites has en-
abled people to interact with each other easily through various social media.
For instance, popular sites like Del.icio.us, Flickr, and YouTube allow users
to comment on shared content (bookmarks, photos, videos), and users can
tag their favorite content. Users can also connect with one another, and sub-
scribe to or become a fan or a follower of others. These diverse activities result
in a multi-dimensional network among actors, forming group structures with
group members sharing similar interests or affiliations. This work systemati-
cally addresses two challenges. First, it is challenging to effectively integrate
interactions over multiple dimensions to discover hidden community structures
shared by heterogeneous interactions. We show that representative community
detection methods for single-dimensional networks can be presented in a uni-
fied view. Based on this unified view, we present and analyze four possible
integration strategies to extend community detection from single-dimensional
to multi-dimensional networks. In particular, we propose a novel integration
scheme based on structural features. Another challenge is the evaluation of dif-
ferent methods without ground truth information about community member-
ship. We employ a novel cross-dimension network validation procedure to com-
pare the performance of different methods. We use synthetic data to deepen
our understanding, and real-world data to compare integration strategies as
well as baseline methods in a large scale. We study further the computational
time of different methods, normalization effect during integration, sensitiv-
ity to related parameters, and alternative community detection methods for
integration.
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1 Introduction

The recent boom of social media (e.g., Del.icio.us, Flickr, YouTube, Face-
book, MySpace and Twitter) permits human interaction with unprecedented
convenience. With widely-available large-scale networks in social media, social
network analysis is gaining increasing attention from a variety of disciplines in-
cluding computer science, physics, economics, epidemiology, business market-
ing, and behavioral science. One fundamental task is to find cohesive subgroups
(a.k.a. communities) whose members interact more frequently with each other
than with those outside the group [41]. The extracted communities can be
utilized for further analysis such as visualization [17], viral marketing [29],
determining the causal factors of group formation [3], detecting group evolu-
tion [28] or stable clusters [4], relational learning [33], and building ontology
for semantic web [23,31,20].

A plethora of approaches have been proposed to address community de-
tection with network data. However, most existing work focuses on only one
dimension of interaction among people (i.e., a network comprised of interac-
tions of a single type). In reality, people interact with each other in assorted
forms of activities, leading to multiple networks among the same set of ac-
tors, or a multi-dimensional network1 with each dimension representing one
type of interaction. In the physical world, people interact with others in a
variety of ways, e.g., face-to-face, by email or by phone; The same is true in
cyberspace as shown in Figure 1. For instance, at popular photo and video
sharing sites (Flickr and YouTube), a user can connect to his friends through
email invitations or the provided “add as contacts” function. Users can also
tag/comment on shared content such as photos and videos. A user on YouTube
can upload a video to respond to a video posted by another user, and can also
become a fan of another user by “subscribing” to the user’s content. Net-
works can be constructed based on each form of activity. By combining them
together, we obtain a multi-dimensional network representing the richness of
user interaction. More generally, people can be active at multiple different so-
cial networking sites. It is common for one user to be registered on several
social networking sites at the same time, e.g., Facebook, Twitter, BlogSpot,
YouTube, and Del.icio.us. In such cases, a multi-dimensional network can be
constructed with each dimension representing user interaction at each site.

For a multi-dimensional network with heterogeneous interactions, one type
of interaction might be insufficient to determine group membership accurately.
In social media, a certain type of interaction can be incomplete due to users’
privacy concern. The interactions can also be noisy since it is much easier
to connect with another user online than in the physical world. Indeed, some

1 Some researchers also use the paraphrase multi-relational network. In social science,
multi-relational network tends to refer to the case that multiple different relations exist be-
tween two actors. While in computer science domain, multi-relational network tends to refer
a network with heterogeneous entities interacting with each other, which actually corre-
sponds to a multi-mode network [35]. Here, we use multi-dimensional network to emphasize
that actors are involved in disparate interactions.
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Fig. 1: Multi-Dimensional Network

online users have thousands of online friends whereas this could hardly be true
in reality. For instance, one user in Flickr has more than 19,000 friends. For
this kind of user, it is really fuzzy to mine the community he/she is involved
in using the friendship network alone. On the other hand, many users in the
network might have only one or two friends. With these noisy and highly
imbalanced interactions, relying on one type of interaction alone might miss
the true user community structure.

Integrating assorted forms of interaction can compensate for incomplete
information in each dimension as well as reduce the noise and obtain a more
reliable community structure. Some users might be reluctant to add friends,
but frequently engage in another activity such as uploading videos or com-
menting on other videos. The interactions at different dimensions all indicate
user interests. Hence, one might infer a more accurate community structure by
integrating disparate interactions. However, idiosyncratic personalities lead to
varied local correlations between dimensions. Some people interact with group
members consistently in one form of activity, but infrequently in another. It
thus becomes a challenge to identify groups in multi-dimensional networks
because we have to fuse the information from all dimensions for integrated
analysis.

In this work, we first present representative approaches of community de-
tection with a unified view. Based on this unified view, we discuss poten-
tial extensions of community detection in one-dimensional (1-D) networks to
multi-dimensional (M-D) networks. We present four integration strategies in
terms of network interactions, utility functions, structural features and com-
munity partitions, respectively. Their pros and cons are discussed in detail.
Typically, a real-world network does not have full information about group
membership. Hence, a novel cross-dimension network validation procedure is
proposed to compare the communities obtained from different approaches. We
establish the veracity of this evaluation scheme based on synthetic data with
known community structure, and then apply it to a real-world network data
to systematically compare different integration strategies.

2 Community Detection in 1-D Networks

In this section, we review existing representative methods for community de-
tection in one-dimensional networks, and then present a unified view of these
methods, preparing their extension to multi-dimensional networks.
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Let G(V,E) denote a network with V the set of n vertices and E the m
edges, and A ∈ {0, 1}n×n denote the adjacency matrix (network interactions).
The degree of node i is di. Aij = 1 if there is an edge between nodes i and j.
Unless specified explicitly, we assume the network is undirected. A community
is defined as a group of actors with frequent interactions occurring between
them. Community detection attempts to uncover the community membership
of each actor. In particular, the problem is defined below:

Community Detection: Given a network A ∈ {0, 1}n×n with n being
the number of actors, and k the number of communities in the network,
community detection aims to determine the community assignment of
each actor. The community assignment is denoted as H ∈ {0, 1}n×k

with

Hij =
{

1, if actor i belongs to community j
0, otherwise (1)

In this work, we study the case each actor belongs to only one community.
That is,

∑k
j=1Hij = 1. To resolve the community detection problem, various

approaches have been developed including latent space models, block model
approximation, spectral clustering and modularity maximization. Below, we
briefly review these representative methods and show that they can be inter-
preted in a unified view.

2.1 Latent Space Models

A latent space model maps the nodes in a network into a low-dimensional
Euclidean space such that the proximity between the nodes based on network
connectivity are kept in the new space, then the nodes are clustered in the
low-dimensional space using methods like k-means [43]. One representative
approach is multi-dimensional scaling (MDS) [6]. Typically, MDS requires the
input of a proximity matrix P ∈ Rn×n, with each entry Pij denoting the
distance between a pair of nodes i and j in the network. For a network, a
commonly used proximity measure is geodesic distance [41], i.e., the length of
the shortest path between two nodes. Let S ∈ Rn×` denote the coordinates of
nodes in the `-dimensional space such that S are column orthogonal. It can
be shown [6,30] that

SST ≈ −1
2

(I − 1
n
11T )(P ◦ P )(I − 1

n
11T ) = P̃ (2)

where I is the identity matrix, 1 an n-dimensional column vector with each
entry being 1, and ◦ the element-wise matrix multiplication. It follows that
S can be obtained via minimizing the discrepancy between P̃ and SST as
follows:

min ‖SST − P̃‖2F (3)

Suppose V are the top ` eigenvectors of P̃ with largest eigenvalues, Λ a diagonal
matrix of top ` eigenvalues Λ = diag(λ1, λ2, · · · , λ`). The optimal S is S =



5

50 100 150 200 250 300

50

100

150

200

250

300
50 100 150 200 250 300

50

100

150

200

250

300

Fig. 2: Basic Idea of Block Model Approximation

V Λ
1
2 . Note that this multi-dimensional scaling corresponds to an eigenvector

problem of matrix P̃ . Then classical k-means algorithm can be applied to find
community partitions.

2.2 Block Model Approximation

Block model approximation is to approximate a given network by a block
structure. The basic idea can be visualized in Figure 2 where the left graph
shows a network and the right one is the block structure after we reorder
the index of actors according to their community membership. Each block
represents one community. Therefore, we approximate the network interaction
A as follows:

A ≈ SΣST (4)

where S ∈ {0, 1}n×k is the block indicator matrix, Σ the block (group) inter-
action density, and k the number of blocks. A natural objective is to minimize
the following formula:

min ‖A− SΣST ‖2F (5)

The discreteness of S makes the problem NP-hard. We can relax S to be con-
tinuous but satisfy certain orthogonal constraints, i.e., STS = Ik, then the
optimal S corresponds to the top k eigenvectors of A with maximum eigenval-
ues. Similar to the latent space model, k-means clustering can be applied to
S to recover the community partition H.

2.3 Spectral Clustering

Spectral clustering [40] derives from the problem of graph partition. Graph
partition aims to find out a partition such that the cut (the total number of
edges between two disjoint sets of nodes) is minimized. Though this cut min-
imization can be solved efficiently, it often returns trivial and non-interesting
singletons, i.e., a community consisting of only one node. Therefore, practi-
tioners modify the objective function so that the group size of communities is
considered. Two commonly used variants are Ratio Cut and Normalized Cut.
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Suppose we partition the nodes of a network into k non-overlapping commu-
nities π = (C1, C2, · · · , Ck), then

Ratio Cut(π) =
k∑

i=1

cut(Ci, C̄i)
|Ci|

(6)

Normalized Cut(π) =
k∑

i=1

cut(Ci, C̄i)
vol(Ci)

(7)

where C̄i is the complement of Ci, and vol(Ci) =
∑

v∈Ci
dv. Both objectives

attempt to minimize the number of edges between communities, yet avoid the
bias of trivial-size communities like singletons. Both can be formulated as a
min-trace problem like below

min
S∈{0,1}n×k

Tr(ST L̃S) (8)

with L̃ (graph Laplacian) defined as follows:

L̃ =
{
D −A (Ratio Cut)
I −D−1/2AD−1/2 (Normalized Cut)

(9)

Akin to block model approximation, we solve the following spectral clustering
problem based on a relaxation to S.

min
S
Tr(ST L̃S) s.t. STS = Ik (10)

Then, S corresponds to the top eigenvectors of L̃ with smallest eigenvalues.

2.4 Modularity Maximization

Modularity [26] is proposed specifically to measure the strength of a com-
munity partition for real-world networks by taking into account the degree
distribution of nodes. Given a random network with n nodes and m edges,
the expected number of edges between node i and j is didj/2m where di and
dj are the degrees of node i and j, respectively. So Aij − didj/2m measures
how far the network interaction between nodes i and j (Aij) deviates from
the expected random connections. Given a group of nodes C, the strength of
community effect is defined as∑

i∈C,j∈C

Aij − didj/2m.

If a network is partitioned into multiple groups, the overall community effect
can be summed up as follows:∑

C

∑
i∈C,j∈C

Aij − didj/2m.
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Fig. 3: A Unified View of Representative Community Detection Methods

Modularity is defined as

Q =
1

2m

∑
C

∑
i∈C,j∈C

Aij − didj/2m. (11)

where the coefficient 1/2m is introduced to normalize the value between -1
and 1. Modularity calibrates the quality of community partitions thus can be
used as an objective measure to optimize.

Let B = A − ddT

2m , sC ∈ {0, 1}n be the community indicator of group C,
and S the community indicator matrix, it follows that

Q =
1

2m

∑
C

sT
CBsC =

1
2m

Tr(STBS) = Tr(ST B̃S) (12)

where

B̃ =
1

2m
B =

A

2m
− ddT

(2m)2
. (13)

With a spectral relaxation to allow S to be continuous, the optimal S can be
computed as the top-k eigenvectors of matrix B̃ [25] with maximum eigenval-
ues.

2.5 A Unified View

In the previous subsections, we briefly present four representative community
detection methods: latent space models, block model approximation, spectral
clustering and modularity maximization. Interestingly, all these methods can
be unified in a process as in Figure 3. The process is composed of 4 components
with 3 intermediate steps. Given a network, a utility matrix is constructed.
Depending on the objective function, different utility matrices can be con-
structed.

Utility Matrix M =


P̃ in Eq. (2) (latent space models)
A in Eq. (4) (block model approximation)
L̃ in Eq. (9) (spectral clustering)
B̃ in Eq. (13) (modularity maximization)

(14)
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After obtaining the utility matrix, we obtain the structural features S via
the top eigenvectors with largest (or smallest subject to formulation) eigen-
values. The selected eigenvectors capture the prominent interaction patterns,
representing approximate community partitions. This step can also be consid-
ered as a de-noising process since we only keep those top eigenvectors that
are indicative of community structures. To recover the discrete partition H,
a k-means clustering algorithm is applied. Note that all the aforementioned
approaches differ subtly by constructing different utility matrices.

The community detection methods presented above, except the latent space
model, are normally applicable to most medium-size networks (say, 100, 000
nodes). The latent space model requires an input of a proximity matrix of
the geodesic distance of any pair of nodes, which costs O(n3) to compute the
pairwise shortest path distances. Moreover, the utility matrix of the latent
space model is neither sparse nor structured, leading to O(n3) to compute its
eigenvectors. This high computational cost hinders its application to real-world
large-scale networks.

On the contrary, the other methods, block model approximation, spectral
clustering, and modularity maximization, construct a sparse or structured (a
sparse matrix plus low rank update) utility matrix, whose computational cost
is almost negligible2. Asymptotically, the cost to construct a utility matrix is

Tutility = O(m). (15)

Implicitly Restarted Lanczos method (IRLM) can be applied to compute the
top eigenvectors efficiently [10,42]. Let ` denote the number of structural fea-
tures to extract. If one makes the conservative assumption that O(`) extra
Lanczos steps be involved, IRLM has the worst time complexity of

Teig = O(h(m`+ n`2 + `3)) (16)

where h, m and n are the number of iterations, the number of edges and
nodes in the network, respectively. Typically, m ∼ O(n) in a social network
with power law distribution [34] and ` << n. In practice, the computation
tends to be linear with respect to n if ` is small. The post-processing step
to extract community partition relies on k-means clustering, which has time
complexity

Tkmeans = O(nk`e) (17)

where ` is the number of structural features, e is the number of iterations.
In summary, the representative community detection methods can be uni-

fied in the same process. The only difference is how to construct the utility
matrix. This also affects the time complexity of different methods. Block model
approximation, spectral clustering, and modularity maximization share sim-
ilar time complexity, which can be solved efficiently. With this unified view,
we can systematically study different strategies to handle multi-dimensional
networks.

2 The utility matrix of modularity maximization is dense but structured, thus it is rarely
computed out. Its structure is exploited directly for eigenvector computation [25,36].
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3 Community Detection in M-D Networks

In the previous section, we reviewed various methods of community detection
in 1-D networks and presented a unified view. Here, we systematically study
possible strategies to extend community detection from 1-D networks to M-D
networks. Before we proceed, we state the problem of M-D network community
detection first. A d-dimensional network is represented as

A = {A(1), A(2), · · · , A(d)}

with A(i) represents the interaction among actors in the i-th dimension satis-
fying

A(i) ∈ Rn×n
+ , A(i) = (A(i))T , i = 1, 2, · · · , d

where n is the total number of actors involved in the network. Here, we concen-
trate on symmetric networks3. In a multi-dimensional network, the interactions
of actors are represented in various forms. In certain scenarios, a latent com-
munity structure exists among actors, which explains these interactions. The
goal of this work is to infer the shared latent community structure among the
actors given a multi-dimensional network. In particular, we attempt to find
out a community assignment such that a utility measure (e.g., block model
approximation error, modularity) is optimized for each dimension.

In order to find out the shared community structure across multiple net-
work dimensions, we have to integrate the information from all dimensions.
Since four components (network, utility matrix, structural features and parti-
tion) are involved throughout the community detection process (Figure 3), we
can conduct the integration in terms of each component as in Figure 4. In par-
ticular, we have Network Integration, Utility Integration, Feature Integration,
and Partition Integration. Below, we delineate each type of integration strategy
in detail. We use modularity maximization as an example to go through all the
different strategies4. The derivation of other variants of community detection
methods (such as block models and spectral clustering) in multi-dimensional
networks following the unified view should be straightforward.

3.1 Network Integration

A simple strategy to handle a multi-dimensional network is to treat it as
single-dimensional. One straightforward approach is to calculate the average
interaction network among social actors:

Ā =
1
d

d∑
i=1

A(i) (18)

3 Directed networks can be converted into undirected networks through certain operations
as shown later.

4 A preliminary work based on modularity maximization is published in [36]. This
manuscript, significantly different the previous conference version, presents a general frame-
work to interpret community detection in multi-dimensional networks.



10

………

A(1) A(d)

Network

Integration

M(1) M(d)
Utility

Integration………

S(1) S(d)

………

Feature

Integration

H(1) H(d)

………
Partition

Integration

Fig. 4: Potential Multi-Dimensional Integration Strategies

Correspondingly,

m̄ =
1
d

d∑
i=1

m(i), d̄ =
1
d

d∑
i=1

d(i) (19)

With Ā, this boils down to classical community detection in a single-dimensional
network. Based on the average network, we can follow the community detec-
tion process as stated in the unified view. Take modularity maximization as
an example. we can maximize the modularity as follows:

max
S

1
2m̄

Tr

(
ST

[
Ā− d̄d̄T

2m̄

]
S

)
(20)

3.2 Utility Integration

Another variant for integration is to combine utility matrices instead of net-
works. We can obtain an average utility matrix as follows:

M̄ =
1
d

d∑
i=1

M (i)

where M (i) denotes the utility matrix constructed in the i-th dimension. The
community indicators can be computed via the top eigenvectors of the utility
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matrix. This is equivalent to optimizing the objective function over all the di-
mensions simultaneously. As for modularity maximization, the average utility
matrix in this case would be

M̄ =
1
d

d∑
i=1

B̃(i) =
1
d

d∑
i=1

{
A(i)

2m(i)
− d(i)(d(i))T

(2m(i))2

}
(21)

Finding out the top eigenvectors of the average utility matrix is equivalent to
maximizing the average modularity as follows:

max
S

1
d

d∑
i=1

Tr(ST B̃(i)S) = max
S

Tr(ST M̄S) (22)

3.3 Feature Integration

We can also perform the integration over the structural features extracted from
each dimension of the network. One might conjecture that we can perform
similar operations as we did for network interactions and utility matrices, i.e.,
taking the average of structural features as follows:

S̄ =
1
d

d∑
i=1

S(i) (23)

Unfortunately, this straightforward extension does not apply to structural fea-
tures. Because the solution S which optimizes the utility function is not unique.
Dissimilar structural features do not suggest that the corresponding latent
community structures are drastically different. For example, let S be the top-`
eigenvectors that maximize modularity Q, and V an orthonormal matrix such
that

V ∈ R`×`, V V T = I`, V
TV = I`

It can be verified that SV also maximizes Q:

1
2m

tr((SV )TB(SV )) =
1

2m
tr(STBSV V T ) =

1
2m

tr(STBS) = Qmax

Essentially, SV and S are equivalent under an orthogonal transformation. In
the simplest case, S′ = −S is also a valid solution. Averaging these structural
features does not result in sensible features.

Alternatively, we expect the structural features of different dimensions to
be highly correlated after certain transformations. To capture the correlations
between multiple sets of variables, (generalized) canonical correlation analy-
sis (CCA) [14,18] is the standard statistical technique. CCA attempts to find a
transformation for each set of variables such that the pairwise correlations are
maximized. Here we briefly illustrate one scheme of generalized CCA which
turns out to equal to principal component analysis (PCA) in our specific case.
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Let S(i) ∈ Rn×` denote the structural features extracted from the i-th
dimension of the network, and wi ∈ R` be the linear transformation applied
to structural features of dimension i. The correlation between two sets of
structural features after transformation is

R(i, j) = (S(i)wi)T (S(j)wj) = wi
T
(

(S(i))TS(j)
)
wj = wi

TCijwj

with Cij = (S(i))TS(j) representing the covariance between the structural
features of the i-th and the j-th dimensions. Generalized CCA attempts to
maximize the summation of pairwise correlations as in the following form:

max
d∑

i=1

d∑
j=1

wi
TCijwj (24)

s.t.
d∑

i=1

wi
TCiiwi = 1 (25)

Using standard Lagrange multiplier and setting the derivatives respect to wi

to zero, we obtain the equation below:
C11 C12 · · · C1d

C21 C22 · · · C2d

...
...

. . .
...

Cd1 Cd2 · · · Cdd




w1

w2

...
wd

 = λ


C11 0 · · · 0
0 C22 · · · 0
...

...
. . .

...
0 0 · · · Cdd




w1

w2

...
wd

 (26)

Recall that our structural features extracted from each dimension is es-
sentially the top eigenvectors of the utility matrix satisfying (S(i))TS(i) = I.
Thus, matrix diag(C11, C22, · · · , Cdd) in Eq. (26) becomes an identity matrix.
Hence w = [w1

T ,w2
T , · · · ,wd

T ]T corresponds to the top eigenvector of the
full covariance matrix on the left side of Eq. (26), which is equivalent to PCA
applied to data of the following form:

X =
[
S(1), S(2), · · · , S(d)

]
(27)

Suppose the SVD of X is X = UΣV T , then w corresponds to the first column
of V . Thus we have

1
d

d∑
i=1

S(i)wi =
1
d

[
S(1), S(2), · · · , S(d)

]
w =

1
d
XV1 =

σ1

d
U1

Since σ1/d is a scalar, U1 is essentially the average feature values of each actor
after we aggregate the structural features of different dimensions along with
the transformation w. There are k−1 degrees of freedom with k communities.
To compute the (k−1)-dimension embedding, we just need to project the data
X onto the top (k−1) principal vectors. It follows that the top (k−1) vectors
of U are the aggregated structural features.
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Algorithm: Structural Feature Integration

Input: Net = {A(1), A(2), · · · , A(d)},
number of communities k,
number of structural features to extract `;

Output: community assignment idx.
1. Compute top ` eigenvectors of the utility matrix as stated in Eq. (14);

2. Compute slim SVD of X = [S(1), S(2), · · ·S(d)] = UDV T ;

3. Obtain lower-dimensional embedding eU = U(:, k − 1);

4. Normalize the rows of eU to unit length;

5. Calculate the cluster idx with k-means on eU .

Fig. 5: Algorithm: Structural Feature Integration for Multi-Dimensional Networks

The detailed structural feature integration algorithm is summarized in Fig-
ure 5. In summary, we first extract structural features from each dimension
of the network via representative community detection methods; then PCA
is applied on the concatenated data as in Eq. (27) to select the top eigenvec-
tors. After projecting the data onto the principal vectors, we obtain a lower-
dimensional embedding which captures the principal pattern across all the
dimensions of the network. Then we can perform k-means on this embedding
to find out the discrete community assignment.

3.4 Partition Integration

Partition integration takes effect after the community partition of each net-
work dimension is ready. This problem has been studied as the cluster ensemble
problem [32], which combines multiple clustering results of the same data from
a variety of sources into a single consensus clustering. Strehl and Ghoph [32]
propose three effective and comparable approaches: cluster-based similarity
partitioning algorithm (CPSA), HypergGraph Partition Algorithm and Meta-
Clustering Algorithm. For brevity, we only present the basic idea of CPSA
here. CPSA constructs a similarity matrix from each clustering. Two objects’
similarity is 1 if they belong to the same group, 0 if they belong to different
groups. Let H(i) ∈ {0, 1}n×k denote the community indicator matrix of clus-
tering based on interactions at dimension i. The similarity between nodes can
be computed as

1
d

d∑
i=1

H(i)(H(i))T =
1
d

d∑
i=1

H̃H̃T where H̃ =
[
H(1), H(2), · · · , H(d)

]
Based on this similarity matrix between nodes, we can apply similarity-based
community detection methods we introduced before to find out clusters. A
disadvantage of this CPSA is that the computed similarity matrix can be
dense, which might not be applicable to large networks. Instead, we can treat
H̃ as the feature representation of actors and cluster them based on k-means
directly. Intuitively, if two actors are assigned to the same group in the majority
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of dimensions, they would share features. Thus, the two actors are likely to
reside within the same community in the final consensus cluster as well.

3.5 Summary

In previous subsections, we have described different strategies to integrate
multi-dimensional network information. Here, we summarize the pros and cons
of different schemes.

Network integration, which simply averages the network interactions in
different dimensions, can be problematic if the interactions are not comparable.
In reality, actors often participate in different dimensions of a network with
varied intensity. Even within the same group, the interaction can be very sparse
in one dimension but relatively more observable in another dimension. So if
there is one dimension with intensive interactions, simply averaging all the
dimensions would overwhelm the structural information in other dimensions.

Utility integration sums up all the utility matrices. This combination is
consistent with the overall objective. But it is unclear whether the utility
function is directly comparable across different dimensions. For instance, in
modularity maximization, the modularity is highly relevant to the density
of interactions as well as the community structure. Is the average of utility
function a reasonable choice? If not, how can we normalize it so that the
utility in different dimensions are comparable. This will be studied more in
the empirical study.

Feature integration identifies transformations such that the structural fea-
tures of different dimensions become highly correlated. The transformations
map structural features into the same space, thus aggregation is viable. Note
that the extraction of structural features helps reduce the noise in each dimen-
sion of the network. Hence, feature integration is expected to be more robust
compared with other methods.

Partition integration relies on discrete hard clusterings. Note that the clas-
sical k-means clustering algorithm normally finds a local optimal and is highly
sensitive to the initial condition. Though k-means is applied to all the schemes,
partition integration apply k-means to each dimension of the network to find
out the partitions, which can introduce more uncertainty, hence are likely to
yield results with relatively high variance.

4 Empirical Study

We now discuss evaluation methods that are suitable for multi-dimensional
networks. An ideal case is that we know a priori community memberships, or
so-called ground truth. We can then adopt commonly used normalized mutual
information (NMI) [32]. Let πa, πb denote two different partitions of commu-
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Input: Net = {A(1), A(2), · · · , A(d)};
a multi-dimensional integration scheme f ;

Output: a community quality measure Q(i) for each network dimension.
1. for p = 1, . . . , d

2. hold out A(p) for testing;
3. obtain community structure H by applying f to

training dimensions {A(1), · · · , A(p−1), A(p+1), · · · , A(d)};
4. compute the quality measure Q(p) based on H and A(p).
5. end

Fig. 6: CDNV: Cross-Dimension Network Validation

nities. NMI is defined as

NMI(πa, πb) =

∑k(a)

h=1

∑k(b)

`=1 nh,` log
(

n·nh,l

n
(a)
h ·n

(b)
`

)
√(∑k(a)

h=1 n
(a)
h log na

h

n

)(∑k(b)

`=1 n
(b)
` log nb

`

n

) . (28)

where n is the total number of data instances, k(a) and k(b) represent the
numbers of communities in partitions πa and πb respectively, na

h, nb
` and nh,`

are, respectively, the numbers of actors in the h-th community of partition πa,
in the `-th community of partition πb, and in both the h-th community of πa

and `-th community of πb. NMI is a measure between 0 and 1. NMI is equal
to 1 when πa, πb are equivalent.

When ground truth is not available, an alternative evaluation method is
needed to quantify community structures extracted employing different inte-
gration strategies. If a latent community structure is shared across network
dimensions, we can perform cross-dimension network validation (CDNV) as
in Figure 6. Given a multi-dimensional network Net = {A(i)|1 ≤ i ≤ d}, we
can learn a community structure from d − 1 dimensions of the network and
check how well the structure matches the left-out dimension (A(p)). In other
words, we use d− 1 dimensions for training and the remaining one for testing.
During the training, we obtain some communities (C), and use C to calculate
modularity for the data of A(p) as follows:

Q =
1

2m

∑
C

∑
i∈C,j∈C

Aij − didj/2m. (29)

A larger modularity implies more accurate community structure is discovered
using the training data.

The above two evaluation methods are designed for different contexts: NMI
is suitable for data with known ground truth and CDNV for data without. If
we could establish their relationship, we can then determine if CDNV can
be used to compare different integration strategies for community detection.
One way to establish the relationship between NMI and CDNV is to employ
synthetic data.
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Fig. 7: One example of 4-Dimensional Network

A1 A2 A3 A4 N U F P
0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Fig. 8: Performance of different community detection methods. A1, A2, A3 and A4 show the
performance on a single dimension. N, U, F, and P denote network, utility, feature, partition
integration, respectively.

To recap, we use Modularity Maximization to produce utility matrix M ,
compute structural features S via spectral analysis, and apply k-means to
find community partitions5 (Figure 3). Different integration strategies can be
applied at various stages as shown in Figure 4. Baseline strategies are to not
integrate (d− 1) dimensions, but use single dimensions.

4.1 Experiments on Synthetic Data

The synthetic data has 3 groups, each having 50, 100, 200 members, respec-
tively. There are 4 dimensions of interactions among these 350 members. For
each dimension of the network, we sample within-group interaction probability
for each group from a uniform distribution. Based on the within-group inter-
action probability, interactions occur between members following a Bernoulli
distribution. Noise is also added by randomly connecting two nodes in the net-
work. Since we have the group membership information for the synthetic data,
NMI (Eq. (28)) can be employed to evaluate the performance of community
evaluation.

5 Since k-means clustering is sensitive to the initialization, we repeat k-means 5 times and
pick whichever is the best as the community partition.
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Table 1: Average performance over 100 runs. NMI denotes the average performance of
comparing the extracted communities with the latent group membership for generating
a network, RNMI the ranking comparing different strategies based on NMI, CDNV the
performance based on cross-dimension network validation, and RCDNV the ranking based
on CDNV. Note that NMI and CDNV yield consistent rankings.

Strategy NMI RNMI CDNV RCDNV

Single-Dimensional – 0.6903 5 0.1413 5
Network 0.7946 4 0.1739 4

Multi-Dimensional Utility 0.9157 2 0.2035 2
Integration Feature 0.9351 1 0.2064 1

Partition 0.8048 3 0.1785 3

Figure 7 shows one example of the generated multi-dimensional network.
Clearly, different dimensions demonstrate different interaction patterns. Fig-
ure 8 reports the performance of community detection in terms of NMI, where
A1, A2, A3 and A4 denote the performance based on a single dimension (or
baseline strategies) and the other four bars show the performance of com-
munity detection using integration strategies corresponding to network (N),
utility (U), feature (F) and partition (P) integration, respectively. Clearly,
the four methods which integrate information from different network dimen-
sions outperform those on single-dimensional networks. This could be easily
explained by the patterns represented in Figure 7. The first dimension of the
network actually only shows two groups, and the second dimension involves
only one group with the other two hidden behind the noise. Thus, using a
single view is very unlikely to recover the correct latent community structure.
This is indicated by the low NMI of the first two dimensions. Utilizing the in-
formation presented in all the dimensions, on the contrary, helps compensate
each other and uncover the shared community structure.

Comparing different integration schemes, feature integration in this case,
uncovers the true community information exactly, whereas the others do not.
Figure 8 shows just one example. To conclude more confidently, we regener-
ate 100 different synthetic data sets and report the average performance of
each method in Table 1. Clearly, multi-dimensional integration schemes out-
perform single-dimensional community detection methods in terms of NMI.
Structural feature integration achieves the best performance with lowest vari-
ance. This is because feature integration denoises the information presented
in each dimension, thus is able to obtain a more robust clustering result. Net-
work integration and utility integration, on the other hand, combine the noisy
network or utility matrix directly, resulting in inferior performance. Partition
integration relies on partitions extracted from each network dimension, and
partitions depend on clustering algorithm being used. In our case, k-means
clustering can produce local optimal partitions. Structural feature integration
is the most effective approach among all of them.

In order to verify the validness of cross-dimension network validation, we
hold out one dimension for testing and pick the other three dimensions for
training. The average performance of CDNV is also shown in the table. It is
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Table 2: The density of each dimension in the constructed 5-dimensional network

Network Dimension Density

A(1) contact 6.74× 10−4

A(2) co-contact 1.71× 10−2

A(3) co-subscription 4.90× 10−2

A(4) co-subscribed 1.97× 10−2

A(5) favorite 3.34× 10−2

interesting that both evaluation schemes: NMI (with latent community mem-
bership information) and CDNV (without true community membership in-
formation) yield consistent rankings when comparing different strategies for
community detection. Next, we will use CDNV to verify how different integra-
tion strategies work on real-world data.

4.2 Experiments on Social Media Data

We now compare different multi-dimensional integration strategies using YouTube
data. We discuss data collection and properties first and then report and an-
alyze experimental findings.

4.2.1 YouTube Data

YouTube6 is currently the most popular video sharing web site. It is reported
to “attract 100 million video views per day”7. As of March 17th, 2008, there
have been 78.3 million videos uploaded, with over 200, 000 videos uploaded
per day8. This social networking site allows users to interact with each other in
various forms such as contacts, subscriptions, sharing favorite videos, etc. We
use YouTube Data API9 to crawl the contacts network, subscription network
as well as each user’s favorite videos. We choose 100 authors who recently
uploaded videos as the seed set for crawling, and expand the network via their
contacts and subscriptions. We obtain a small portion of the whole network,
with 30, 522 user profiles reaching in total 848, 003 contacts and 1, 299, 642
favorite videos. After removing those users who decline to share their contact
information, we have 15, 088 active user profiles as presented in three different
interactions: two adjacency matrices of size 15, 088 × 848, 003 representing
contact relationship, and subscriptions and a matrix of size 15, 088×1, 299, 642
representing users’ favorite videos.

One issue is that the collected subscription network is directional while
most community detection methods such as block models, spectral clustering
and modularity maximization, are proposed for undirected networks. For such

6 http://www.youtube.com/
7 http://www.usatoday.com/tech/news/2006-07-16-youtube-views x.htm
8 http://ksudigg.wetpaint.com/page/YouTube+Statistics?t=anon
9 http://code.google.com/apis/youtube/overview.html
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Fig. 9: Power law distribution on Different Dimensions

cases, simply ignoring the direction can confuse the two roles of the directional
interaction. Instead, we decompose the asymmetric interaction A into two
unidirectional interactions:

A′ = AAT ; (30)
A′′ = ATA. (31)

Essentially, if two social actors both subscribe to the same set of users, it is
likely that they are similar and share the same community; On the other hand,
if two are referred by the same set of actors, their similarity tends to be higher
than that of random pairs. This is similar to the two roles of hub and authority
of web pages as mentioned in [19].

To utilize all aspects of information in our collected data, we construct a
5-dimensional network:

A(1) contact network: the contact network among those 15, 088 active users;
A(2) co-contact network: two active users are connected if they both add another

user as contact; This is constructed based on all the reachable 848,003
users (excluding those active ones) in our collected data following Eq. (30).

A(3) co-subscription network: the connection between two users denotes they
subscribe to the same user; constructed following Eq. (30);

A(4) co-subscribed network: two users are connected if they are both subscribed
by the same user; constructed following Eq. (31);

A(5) favorite network: two users are connected if they share favorite videos.

All these different interactions are correlated with user interests. According
to homophily effect well studied in social science [22], people tend to connect
to others sharing certain similarities. Thus, we expect that connected friends
in the contact network A(1) is more likely to share certain interests. Similarly,
if both users connect to another user or a favorite video (as A(2), A(3) or A(5)),
they are likely to share certain interests. On the other hand, if two users are
subscribed by the same set of users (as in A(4)), their shared content, thus
their interests, are similar. Essentially, we hope to extract communities share
similar interests by integrating heterogeneous interactions.
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Table 3: Performance when actors are clustered into 20, 40, and 60 communities, respectively.
In the table, R(i)(1 ≤ i ≤ 5) denotes the ranking of each method based on CDNV as using
A(i) for testing, and Raverage the average ranking across all network dimensions. Bold
entries denote the best in each column for each case.

k=20 Strategies R(1) R(2) R(3) R(4) R(5) Raverage

A(1) — 7 8 8 8 7.75

Single-Dimensional A(2) 4 — 5 5 6 5.00

Community Detection A(3) 6 5 — 4 4 4.75

A(4) 7 4 4 — 5 5.00

A(5) 8 6 6 6 — 6.50
Network 5 8 7 7 7 6.80

Multi-Dimensional Utility 2 2 2 2 2 2.00
Integration Feature 1 1 1 1 1 1.00

Partition 3 3 3 3 3 3.00

k=40 Strategies R(1) R(2) R(3) R(4) R(5) Raverage

A(1) — 8 6 7 8 7.75

Single-Dimensional A(2) 4 — 4 5 6 4.75

Community Detection A(3) 5 4 — 4 4 4.25

A(4) 7 6 5 — 7 6.25

A(5) 8 7 7 6 — 7.00
Network 6 5 8 8 5 6.40

Multi-Dimensional Utility 2 2 2 3 2 2.20
Integration Feature 1 1 1 2 1 1.20

Partition 3 3 3 1 3 2.60

k=60 Strategies R(1) R(2) R(3) R(4) R(5) Raverage

A(1) — 5 6 7 8 6.50

Single-Dimensional A(2) 3 — 5 4 6 4.50

Community Detection A(3) 6 6 — 5 7 6.00

A(4) 7 4 4 — 5 5.00

A(5) 8 8 7 6 — 7.25
Network 5 7 8 8 4 6.40

Multi-Dimensional Utility 2 2 2 1 2 1.80
Integration Feature 1 1 1 2 1 1.20

Partition 4 3 3 3 3 3.20

Table 2 shows the connection density of each dimension. Contact dimension
is the most sparse one, while the other dimensions, due to the construction,
are denser. Figure 9 shows the degree distribution in contacts network and
favorite network. Both follow a power law pattern [8] as expected. This data
set is publicly available at the first author’s homepage10.

4.2.2 Comparative Study

The four multi-dimensional integration schemes as well as community detec-
tion methods on a single dimension are compared. We cluster actors involved
in the network into different numbers of communities. The clustering perfor-
mance of single-dimensional and multi-dimensional methods when k = 20, 40
and 60 are presented in Table 3. In the table, rows represent methods and

10 http://www.public.asu.edu/~ltang9/heterogeneous_network.html
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columns denote the rankings when a certain network dimension is used as
test data. The bold face denotes the best performance in each column for
each case. Note that in our cross-dimension network validation procedure, the
test dimension is not available during training, thus the diagonal entries for
single-dimensional methods are not shown.

Feature integration is clearly the winner most of the time, except for certain
rare cases (e.g., using A(4) as the test dimension when k = 40 or 60). We notice
that the rankings of different integration strategies do not change much with
different k. A closer examination reveals that utilizing information of all the
dimensions (except network integration) outperforms single-dimensional clus-
tering. Network integration does not work well, because the network studied
here are weighted and simple average blurs the latent community structure
information presented in each dimension. In terms of performance ranking,
feature integration ≺ utility integration ≺ partition integration ≺ network in-
tegration. Feature integration, by removing noise in each dimension, yields the
most accurate community structure among all the methods.

5 Further Analysis

In the previous section, we have demonstrated that feature integration tends
to outperform other integration schemes. In this section, we perform further
analysis concerning the computational time of different methods, normaliza-
tion effect during integration, sensitivity to related parameters, and alternative
community detection methods for integration.

5.1 Efficiency Study

The four multi-dimensional integration schemes differ drastically over time
complexity. Table 4 summarizes the asymptomatic time complexity of differ-
ent methods. Clearly, network integration and utility integration are the most
efficient, which require the average of network matrix or utility matrix with
time complexity O(dm). Following that, one instance of eigenvector compu-
tation and k-means clustering are required. Feature integration and partition
integration require the computation of structural features in each network di-
mension. Note that this can be accelerated via parallel computing. Feature
integration needs to compute the SVD of a dense matrix X (Eq. (27)) of size
n × d`, which costs O(nd` · min(n, d`)). Since d << n and ` << n. The ad-
ditional computational cost is still acceptable. Partition integration, without
SVD, requires many more runs of k-means clustering, but without the SVD
computation for integration. Since the major computational cost is associated
with the eigenvector problem, feature integration and partition integration are
expected to take more time.

Figure 10 and Figure 11 show the computational time of modularity max-
imization with respect to a variety of community numbers and network sizes.
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Table 4: Time complexity of different integration strategies. Integration Cost denotes the
additional cost to perform the integration. #Tutility , #Teig , and #Tkmeans denote the
required number of utility matrix construction, eigenvector computation, and kmeans clus-
tering, respectively. Tutility , Teig and Tkmeans are specified in Eqs. (15), (16) and (17).

Integration Scheme Integration Cost #Tutility #Teig #Tkmeans

Network Integration O(dm) 1 1 1
Utility Integration O(dm) d 1 1
Feature Integration O(nd` ·min(n, d`)) d d 1

Partition Integration Tkmeans d d d
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In both figures, feature integration and partition integration are comparable,
which is consistent with our analysis. By contrast, network integration and
utility integration need to compute the eigenvector of only one utility matrix,
thus it is more efficient. However, as we have demonstrated in the previous
section, the performance of these two strategies is not comparable to feature
integration. Note that in Table 4, we only show the asymptotic computation
time. In reality, the network density can also affect the computational cost.
It is observed when the number of clusters is huge, the computation time of
integrated network even takes more time than feature integration (100 com-
munities in Figure 10). As shown in Figure 11, the computational time scales
linearly with respect to network size, promising for applications to large-scale
networks. In summary, if efficiency is the major concern, we recommend utility
integration, which is fastest, and is only second in performance to the opti-
mal integration scheme. Otherwise, feature integration, though with additional
computational cost, should be selected.

5.2 Normalization Effect

In the previous section, we showed that network integration and utility integra-
tion is not comparable to feature integration. One conjecture is that whether
or not we can find an effective normalization or weighting scheme such that
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they can be integrated more effectively. Here, as an attempt, we try some
straightforward schemes and show the effect.

For network integration, a natural solution is to normalize the interaction
by the total number of interactions. Specifically, we have the following weighted
network integration:

Ā =
d∑

i=1

A
(i)
normalized =

d∑
i=1

A(i)/(2m(i)) (32)

Essentially, after this normalization, the total weight of the interaction be-
comes 1 in each dimension.

As for utility integration, one hypothesis is to use the community strength
in each dimension as a guide to do the weighted average. If one dimension’s
community structure is more prominent, it seems reasonable to trust that
dimension more. Let Q(i) denote the modularity computed in dimension i. We
integrate the utility matrix in a weighted fashion as follows:

M̄ =
d∑

i=1

Q(i)M (i) (33)

Due to the space limit, we only show the performance on the contact di-
mension of the YouTube network in Figure 12. The attempt of normalizing
network interactions helps most of the time, and utility weighting shows com-
parable performance to simple average of utility. It seems assigning different
weights to the dimensions requires more insightful understanding upon the
dimensions. After all, the performance of network integration and utility in-
tegration after normalization and weighting is still not comparable to feature
integration.

5.3 Sensitivity of Feature Integration

In feature integration, one parameter is the number of structural features to
extract (` in Figure 5). In this part, we study the performance sensitivity
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of feature integration with respect to this parameter. We vary the number of
structural features from 10 to 500 and show the performance variations in Fig-
ure 13. The performance stabilizes when reasonable large number of structural
features (say, > 150) are extracted. As long as there are enough structural fea-
tures, the performance is reasonably good. That is, feature integration is not
sensitive to the parameter in a large range. In practice, we can start from a
reasonably large number, and exploit cross-dimension network validation to
select a proper parameter.

5.4 Alternative Community Detection Methods

Note that this work presents a general framework to integrate information of
heterogeneous interactions. Previously, we showed the result based on mod-
ularity maximization. The same integration schemes can be applied to other
community detection methods as well, such as block model approximation
and spectral clustering. The latent space model is not included here due to
its high computational cost as discussed in Section 2.5. We can simply replace
the utility matrix with network interaction or graph Laplacian as specified in
Eq. (14). One interesting question is which community detection method is
the best?

Here, we combine the feature integration strategy with block model ap-
proximation, spectral clustering and modularity maximization, respectively.
The resultant performance on the contact dimension of YouTube network is
plotted in Figure 14. Spectral clustering is consistently better than modularity
maximization and block model approximation. This result is consistent with
that as reported in [42].

Figure 15 shows the performance of four different integration schemes with
spectral clustering. Clearly, feature integration, similar to the case of modular-
ity maximization, is the winner. Note that our integration scheme is indepen-
dent of the community detection method. With a proper constructed utility
matrix, we might achieve better performance.
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6 Related Work

Multi-dimensional networks (or multiple networks constructed from disparate
sources) appear in many web applications. Meza et al. [1] constructs a seman-
tic web to detect the Conflict of Interest relationship among paper reviewers
and authors. Two social networks FOAF (Friend-of-a-Friend) and DBLP (co-
author) networks are integrated in terms of attribute similarity of persons.
Jung et al. [16] construct a semantic social network which includes a social
network, an ontology network and a concept network. It is shown that relation-
ships in one network might be inferred from another. Jin et al. [44] study the
entity ranking problem in social networks. The authors first extract different
relations between entities and construct heterogeneous social networks. Then
they integrate the constructed networks with different weighting methods for
more accurate ranking. Zhou et al. [46] recommend documents in a digital li-
brary by integrating a citation network and networks of documents and other
related entities.

Some work attempts to address unsupervised learning with multiple data
sources or clustering results, such as cluster ensemble [32,38,11] and consensus
clustering [24,15,27,12]. These methods essentially fall into partition integra-
tion scheme presented in our framework. Most of the algorithms aim to find a
robust clustering based on multiple clustering results, which are prepared via
feature or instance sampling or disparate clustering algorithms. A similar idea
is applied to community detection in social networks [13]. A small portion of
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connections between nodes are randomly removed before each run, leading to
multiple different clustering results. Those clusters occurring repeatedly are
considered more stable, and are deemed to reflect the natural communities
in reality. However, all the cluster ensemble methods concentrate on either
attribute-based data or one-dimensional networks.

Another related field is multi-view clustering. Bickel and Scheffere [5] pro-
pose co-EM and an extension of k-means and hierarchical clustering to handle
data with two conditional independent views. Sa [9] creates a bipartite based
on the two views and tries to minimize the disagreement. Different spectral
frameworks with multiple views are studied in [45] and [21]. The former defines
a weighted mixture of random walk over each view to identify communities.
The latter assumes clustering membership of each view is provided and finds an
optimal community pattern via minimizing the divergence of the transformed
optimal pattern and the community membership of each view. A variant of
utility integration based on block model approximation plus regularization is
presented in [37]. Similarly, [2] suggests combining graph Laplacians for semi-
supervised learning. It is empirically verified that our proposed integration
schemes also apply to spectral clustering and block model approximation, and
feature integration tends to be the most robust one.

Unsupervised multiple kernel learning [39] is relevant to network integra-
tion if we deem each dimension of the network as a similarity or kernel matrix.
Multiple kernel learning aims to find a combination of kernels to optimize for
classification or clustering. Unfortunately, its limited scalability hinders its
application even to a medium-size network.

Some theoretical analysis of multi-view clustering via canonical correlation
analysis is presented in [7]. It shows that under the assumption that the views
are uncorrelated given the cluster label, a much weaker condition is required
for CCA to separate clusters successfully. However, the conclusion is based on
two views with each being attributes. It requires further research to generalize
the theoretical result to networks of multiple heterogeneous interactions.

7 Conclusions and Future Work

Multi-dimensional networks commonly exist in many social networking sites,
reflecting diverse individual activities. In this work, we propose and discuss dif-
ferent strategies to detect the latent communal structure in a multi-dimensional
network. We formally describe the community detection problem in multi-
dimensional networks and present a framework of different integration schemes
to handle the problem. We show that representative community detection
methods such as latent space models, block model approximation, spectral
clustering, and modularity maximization, can be presented in a unified view
involving four components: network interactions, utility matrix, structural fea-
tures and community partitions. In this way, we can integrate the information
presented in different network dimensions in terms of each component, leading
to four different integration schemes: network integration, utility integration,
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feature integration and partition integration. We systematically study these
different integration schemes and show that feature integration, which extracts
structural features from each dimension of a multi-dimensional network and
integrate them via principal component analysis, outperforms other integra-
tion schemes.

As we have shown in the empirical study, utility integration is efficient
when compared with feature integration. However, its performance depends
on a clever weighting scheme over each dimension. It is intriguing to find an
effective scheme that can boost the performance of utility integration as com-
parable to feature integration while maintaining efficiency. In our current work,
we assume that heterogeneous interactions share the same community struc-
ture. When community structures vary significantly in subsets of dimensions,
new research questions arise. Can we automatically determine which dimen-
sions share the same community structure? How are they correlated? By cross-
dimension network validation, we might be able to calibrate the correlation
between different network dimensions. However, this problem becomes com-
plicated if some communities are shared across different dimensions whereas
others are not. Further research is required in this area. It would also be inter-
esting to extend the integration strategies to handle overlapping communities
to construct a semantic ontology from tag networks. We expect that more re-
search on community detection in multi-dimensional networks will emerge in
the near future.
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